
Eur. Phys. J. D 42, 309–316 (2007)
DOI: 10.1140/epjd/e2007-00035-7 THE EUROPEAN

PHYSICAL JOURNAL D

Studies of bosons in optical lattices in a harmonic potential

R. Ramakumar1,a, A.N. Das2, and S. Sil3

1 Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
2 Condensed Matter Physics Group, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
3 Department of Physics, Visva Bharati, Santiniketan-731235, India

Received 11 October 2006 / Received in final form 18 January 2007
Published online 21 February 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. We present a theoretical study of Bose condensation and specific heat of non-interacting bosons
in finite lattices in harmonic potentials in one, two, and three dimensions. We numerically diagonalize
the Hamiltonian to obtain the energy levels of the systems. Using the energy levels thus obtained, we
investigate the temperature dependence, dimensionality effects, lattice size dependence, and evolution to
the bulk limit of the condensate fraction and the specific heat. Some preliminary results on the specific
heat of fermions in optical lattices are also presented. The results obtained are contextualized within the
current experimental and theoretical scenario.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 03.75.Nt Other Bose-Einstein condensation phenomena – 03.75.Hh
Static properties of condensates; thermodynamical, statistical, and structural properties

1 Introduction

Bosons in optical lattices provides a microscopic labora-
tory for exploration of the properties of many-boson sys-
tems with unprecedented control on number of bosons
per site, boson kinetic energy, and boson-boson interac-
tion strength [1–5]. Experimentalists have explored [1–4]
quantum phase transitions, excitation spectra, condensate
fraction as a function of boson-boson interaction strength,
and properties of boson Tonks gas in one, two, and three
dimensional optical lattices. Theoretical studies [5–18] of
bosons in optical lattices thus far mainly concentrated
on quantum phase transitions between various possible
phases such as Mott insulator phase, density-wave phase,
and Bose-condensed phase. Finite temperature properties
of bosons in the combined optical lattice potential and the
confining harmonic potential have not received much at-
tention except in some studies [19,20] where, again, the
focus is on Mott transition.

In this paper, we present a theoretical study of bosons
in optical lattices in a harmonic potential in one, two, and
three dimensional optical lattices. In particular, we study
the temperature dependence of the condensate fraction
and specific heat. This study is useful for the following
reasons. After the discovery [21–23] of Bose-Einstein con-
densation in harmonic traps (for reviews see Refs. [24–27]),
one of the important studies done was to measure the
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temperature dependence of the condensate fraction and
its comparison with theory, and such measurements for
bosons in optical lattices can be expected in near future.
Thermodynamic properties of bosons in optical lattices
are of considerable interest in their own right. Though
no measurement of specific heat of bosons in a harmonic
potential and of bosons in a lattice with harmonic po-
tential have been reported thus far, such measurements
have already been reported [28] for fermions in harmonic
potential, and it is not unreasonable to expect such mea-
surements for bosons as well. Furthermore, experiments
are performed on bosons in finite lattices, and so it would
be useful to understand the properties of bosons in finite
lattices to see finite size effects and their evolution to-
wards the bulk limit. The motivations and relevance of
the studies presented in this paper are, hopefully, clear to
the reader from the foregoing.

As stated, we present studies of lattice bosons in har-
monic traps. We have considered non-interacting bosons
in a periodic lattice in one-dimension (1d), a square lat-
tice in two-dimensions (2d), and a cubic lattice in three-
dimensions (3d). The bosons are considered to be moving
in the combined lattice and harmonic potentials. We nu-
merically diagonalize the Hamiltonian matrix for bosons
in finite lattices in a harmonic potential, and concentrate
on calculations of the temperature dependence of ground
state occupancy, specific-heat, finite-size effects, and di-
mensionality effects. This work is presented in Sections 2
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and 3. In Section 4, some preliminary results on our recent
work on fermions in optical lattices in a harmonic poten-
tial is presented, and conclusions are given in Section 5.

2 Model and method

In this Section, we will describe the model and the method
followed. Consider non-interacting bosons under the com-
bined influence of a periodic optical lattice potential and
an overall harmonic confining potential. The Hamiltonian
of this system is,

H = −t
∑

〈ij〉

(
c†icj + c†jci

)
+ K

∑

i

r2
i ni − µ

∑

i

ni, (1)

where t is the kinetic energy gain when a boson hop from
site i to its nearest neighbor site j in the optical lattice,
c†i is the boson creation operator, K (>0) the strength of
the harmonic confining potential, ri the locator of the site
i with respect to the origin which is at the center of the
lattice, ni = c†i ci the boson number operator, and µ the
chemical potential. For bosons under the influence of only
the harmonic potential Bose condensation is by now well
understood [24–27]. Our aim is to consider the case of fi-
nite t and finite K. After writing the Hamiltonian (Eq. (1))
in the single particle site basis, we numerically diagonalize
it for various values of K and for various lattice sizes in
1d, 2d, and 3d. The energy levels thus obtained are used
in calculations of the ground state occupancy and specific
heat as a function of temperature. We will see that any
non-zero value of K leads to substantial changes in both
these properties. We have calculated the energy levels and
the bosonic properties using open boundary conditions. It
may be noted here that for the 1d case, the eigenfunctions
and eigenenergies may be exactly obtained in terms of the
Mathieu functions as shown by Rey and collaborators [29].
They have given approximate analytical expressions for
the eigenenergies and eigenfunctions. We compared our
eigenenergies for 1d systems with their approximate re-
sult (Eq. (15) in their paper) in the tunneling dominated
regime and found that their eigenenergies are very close
to our exact results for large values of t/k.

The ground state occupancy and the specific heat are
calculated in the following way. The population N(Ei) of
a state with energy Ei is given by the Bose distribution

N(Ei) =
1

eβ (Ei−µ) − 1
, (2)

where β = 1/kBT and kB is the Boltzmann constant.
The chemical potential is determined from the number
equation

N =
im∑

i=0

N(Ei) , (3)

where Ei with i = 0, 1, 2, ..., im denotes the energy levels
from the lowest to the highest level of a boson in a finite
lattice in the presence of the harmonic confining potential.

For a given number of bosons, at any temperature, the
chemical potential and the population in the lowest level
(N0) are determined using equations (2) and (3).

The total energy of the system of bosons is given by

Etot =
im∑

i=0

N(Ei)Ei. (4)

The temperature derivative of Etot gives the specific heat

Cv =
1

kBT 2

[
I3 − I2I1

I◦

]
, (5)

where,

I◦ =
im∑

i=0

F (Ei − µ) , (6)

I1 =
im∑

i=0

Ei F (Ei − µ) , (7)

I2 =
im∑

i=0

(Ei − µ)F (Ei − µ) , (8)

I3 =
im∑

i=0

Ei(Ei − µ)F (Ei − µ) . (9)

In the above equations

F (Ei − µ) =
eβ(Ei−µ)

[
eβ(Ei−µ) − 1

]2 . (10)

3 Results and discussions on bosons

Before presenting the results of our calculations, some gen-
eral remarks are in order. In the absence of a harmonic
confining potential, the bosons in a periodic lattice un-
dergo a Bose condensation phase transition only in 3d
where the boson Density Of States (DOS) in the thermo-
dynamic limit vanishes at the bottom of the band. The
phase transition is not possible for bosons in 1d or 2d pe-
riodic lattices since the DOS at the bottom of the band
either diverges or remains finite, and the condition N0 = 0
and µ = E0 is not satisfied at any temperature. Here, E0

is the energy of the lowest level or bottom of a band. For
free bosons in a harmonic confining potential, the phase
transition is possible in 2d but not in 1d [30]. For finite
size systems and for finite number of particles there is no
true phase transition using the above criteria. However,
at sufficiently low temperatures, a macroscopic number of
particles will occupy the ground state and thus Bose con-
densation will occur [31]. With these general remarks, we
go to our results.

3.1 One dimensional case

In Figure 1, the variation of the condensate fraction
(N0/N) with temperature is shown for 1000 bosons in a
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Fig. 1. The variation of condensate fraction with temperature
for 1000 bosons in 1d finite lattices in a harmonic potential
with k = 0.01. The size of the lattices are: Nl = 30 (dots),
50 (dashes), 100 (dash-dot), and 1000 (solid line). kBT is ex-
pressed in energy units of t = 1.
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Fig. 2. The variation of condensate fraction with temperature.
Solid lines are for bosons in a 1d finite lattice of size 1000 in
a harmonic potential with k = 0.01 for boson numbers N =
100 (top), 1000 (middle), 10000 (bottom). The dashed line is
for 10000 free bosons in a harmonic trap with k = 0.01. The
dash-dot line is for 10000 bosons in a 1d lattice of 1000 sites.
In this and other figures T0 is the condensation temperature
(see text).

1d lattice (of lattice constant a) for k = Ka2 = 0.01 (in
the energy scale of t = 1) for different lattice sizes (Nl).
The occupancy in the lowest level is considerable even at
high temperatures for smaller size systems and it decreases
with increasing size. For k = 0.01, no size effect is seen for
Nl ≥ 400. We have presented a curve for Nl = 1000 which
may be considered as an infinite size result for this value
of k.

In Figure 2 we have shown the temperature depen-
dence of the condensate fraction (N0/N) for a one dimen-
sional lattice of size Nl = 1000 in presence of harmonic
potential of strength k = 0.01 for different numbers of
bosons. The N0/N is plotted against T/T0. Here, T0 is
determined by setting N0 = 0 and µ = E0 in the number
equation (Eq. (3)) to obtain

N =
im∑

i=1

1
e(Ei−E0)/kBT0 − 1

. (11)
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Fig. 3. The variation of T0 (in energy units of t = 1) with N
for bosons in a 1d lattice of size 1000 in a 1d harmonic trap
with k = 0.02 (top), 0.01 (middle), and for free bosons in a
harmonic trap for k = 0.01 (bottom).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

C
v/

N
k B

T/T0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

C
v/

N
k B

T/T0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

C
v/

N
k B

T/T0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

C
v/

N
k B

T/T0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

C
v/

N
k B

T/T0

Fig. 4. Temperature dependence of the specific heat per par-
ticle for 600 bosons. The dashed line is for free bosons in a
harmonic potential. Solid lines are for bosons in a 1d optical
lattice of size 1000 in a harmonic potential for (from top to
bottom): k = 0.001(top), 0.005, 0.01, and 0.02 (bottom).

Note that in the thermodynamic limit and when the DOS
vanishes at the bottom of the boson energy band, T0 gives
the phase transition temperature. For finite size lattices
T0 may be considered as the condensation temperature. In
the absence of a harmonic trap, N0/N is appreciable for
bosons in a 1d lattice even at T = 2T0 (dash-dot curve
in Fig. 2). It decreases rapidly with the application of
the harmonic potential and also decreases with increasing
number of bosons for a fixed value of k. For a Bose gas in
a harmonic trap (dashed curve in Fig. 2), N0/N almost
vanishes at high temperatures. In Figure 3, the variation
of T0 with number of bosons (N) is shown for different
values of the harmonic potential. The T0 increases almost
linearly with N . For a fixed N , it increases with increasing
strength of the harmonic potential.

In Figure 4, we have plotted the specific heat per par-
ticle against T/T0 for different values of k for Nl = 1000
and N = 600. It is seen that the specific heat decreases
with increasing value of k. For k = 0.001, a broad peak is
seen in the specific heat, which is a signature of the finite
size of the lattice. For such a small value of k, even a size of
1000 sites is not enough to confine the bosons within the
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Fig. 5. Size effect in 2d for N = 540. The dashed curves are
for k = 0.01 and lattice sizes: 30 × 30 (top), 40 × 40, 50 × 50,
60 × 60, and 80 × 80 (bottom). Solid curves are for lattice
bosons without harmonic potential for lattice sizes: 30 × 30
(top), 40× 40, 50× 50, 60× 60, and 80× 80 (bottom). kBT is
measured in energy units of t = 1.

harmonic trap (i.e., some of the bosons may occupy the
boundary sites), hence finite size effects would show up.
As the strength of the harmonic potential increases, the
number bosons at high-energy sites at the edges of the lat-
tice is insignificant and the finite size effect disappears. We
have also shown Cv for bosons under the influence of only
the harmonic potential. One notices at once that while
the dependence of Cv on the scaled temperature (T/T0)
for free bosons in a harmonic potential is independent of
k, the same is not true for lattice bosons. It is found that,
switching on the lattice potential substantially reduces the
Cv. We also note that reducing the strength of harmonic
potential for the lattice bosons drives the system towards
the limit of free bosons in a harmonic potential, which is
counter intuitive to what one might naively expect. In the
very low temperature range, all the curves are very close
to each other. This can be understood if we look at the
single particle spectrum of a large lattice. In this case, the
low energy part of the band is approximately parabolic,
and so one can transform the problem to a free particle
in a harmonic potential. Hence one expects the proper-
ties of lattice bosons in a harmonic trap will be close to
that of free bosons in harmonic trap at sufficiently low
temperatures.

3.2 Two dimensional case

In this section we present our results on bosons in two
dimensional optical lattices in a 2d harmonic potential.
These results are presented in Figures 5–10. Figure 5
shows the variation of the condensate fraction with tem-
perature for different lattice sizes for k = 0 and 0.01, re-
spectively. A macroscopic condensation occurs at a lower
temperature for larger size of the system. The dashed lines
in Figure 5 exhibit the effect of harmonic potential on lat-
tice bosons in 2d. In the presence of a harmonic confining
potential, N0/N versus T curves become almost size inde-
pendent for lattice sizes of 80 × 80 and larger, unlike the
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Fig. 6. The variation of T0 (in energy units of t = 1) with
number of bosons. Solid lines are for an 80 × 80 lattice and
with k = 0.05 (top), 0.01 (middle), and k = 0 (bottom). The
dots are for bosons with only the harmonic trap potential with
k = 0.01.

case of k = 0 (solid lines) where the condensation tem-
perature decreases rapidly with the size of the system.
For largest lattice size shown, in presence of the harmonic
potential our results may correspond to the results in the
thermodynamic limit. It may be mentioned that for larger
number of bosons a larger lattice size is needed to reach
the infinite size limit. The T0 is clearly seen to be con-
siderably increased with the introduction of the harmonic
potential. We also note that the condensate fraction grows
faster with decreasing temperature in 2d as compared to
that in 1d (see Figs. 1 and 2). In Figure 6, we have shown
the variation of T0 with boson number. The figure shows
that, for a fixed lattice size and N , T0 increases with in-
creasing strength of the harmonic confinement potential.
It also shows that the bosons under the combined effect
of lattice and harmonic potentials have a higher transi-
tion temperature compared to bosons with either of the
potentials absent. In comparison with 1d, T0 is found to
increase rapidly for small N and a monotonic increase for
larger N , clearly showing a dimensionality effect.

In Figure 7, we have exhibited the effect of lattice size
on the specific heat of bosons for a fixed N and k. For
small lattice sizes, we find a flat region in Cv for tempera-
tures below T0. With increasing lattice size the flat region
evolves into a peak which becomes sharper as the size of
the lattice approaches the bulk limit. If one compares the
Cv results for 80 × 80, 100 × 100, 150 × 150 lattices, one
finds that in the low temperature range the value of Cv is
same for all the three curves, while in the high tempera-
ture range Cv is smaller for smaller size systems. The latter
is a signature of the size effect. For higher temperatures
more and more bosons would occupy the boundary sites
of the lattice for a given value of k leading to appreciable
finite size effects. Given the great control experimentalists
have demonstrated, these effects may be within the reach
of experimental observability in near future.

In order to get an understanding of the effect of har-
monic potential strength on the specific heat of lattice
bosons, we have shown in Figure 8, Cv as a function of
T/T0 for various values of k. This figure shows that the
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Fig. 7. Lattice size effect on specific heat in 2d for 3840 bosons
in a harmonic trap with k = 0.01. The curves are for lattice
sizes: 150×150 (solid line), 100×100 (long dashes line), 80×80
(short dashed line), 50×50 (dotted line), and 30×30 (dash-dot
line).
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Fig. 8. Specific heat per boson in 2d for 3840 bosons in a
100 × 100 lattice in a harmonic potential with k = 0.01 (solid
line), k = 0.02 (dash line), and k = 0.05 (dash-dot line).

Cv curves for different k values intercept at a temperature
T/T0 ≈ 1.1 for the boson number (N = 3840) considered.
Below this temperature Cv is lower for higher k, while
above it increasing k increases Cv. This is in contrast to
the behavior of bosons in 1d (Fig. 4) where increasing k
decreases Cv except at very low temperatures. The peak
in Cv curve is seen to decrease with increasing harmonic
confinement. The behavior of Cv shown in Figure 8 re-
sults from an interplay of the effects of the harmonic po-
tential and finite size of the lattice. The cross-over effect
for T/T0 ≥ 1.1 occurs because in this temperature range
bosons are delocalized over the entire lattice so that they
sense the existence of boundaries. This is clear from Fig-
ure 9 in which Cv is shown for a larger lattice (150× 150)
and one notices that the crossing has disappeared in the
temperature range shown.

In order to get an insight into the dimensionality ef-
fects, we calculated the one boson density of states for
a lattice boson in a harmonic potential. The normalized
DOS for the 2d case is shown in Figure 10. In the ab-
sence of the harmonic potential, the DOS has a van-Hove
singularity for a 2d square lattice. Any finite harmonic po-
tential leads to drastic changes in DOS by wiping out the
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Fig. 9. Specific heat per boson in 2d for 540 bosons in a 150×
150 lattice in a harmonic potential with k = 0.01 (solid line),
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dotted curve (top) is for bosons in 2d harmonic trap and is
independent of k.
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Fig. 10. Normalized DOS per site versus energy for an 100 ×
100 lattice for k = 0.01 (solid line), 0.02 (dash-dot line), and
0.03 (dashed line).

van-Hove singularity and flattening the DOS in an energy
range which increases with increasing harmonic potential
strength (k). This range also increases with increasing size
of the lattice (not shown in the figure). The DOS at the
bottom of the band vanishes as the size of the lattice ap-
proaches the infinite limit, and in the low energy range
it shows almost linear increase with energy before taking
the constant value. The DOS for bosons in a 2d lattice in
presence of a harmonic trap may thus be approximately
given by

ρ(E) = γE for 0 ≤ E ≤ E1

= γE1 for E1 ≤ E ≤ E2, (12)

where all the energies are measured from the bottom of the
energy spectrum. It is found that γ is strongly k depen-
dent and decreases with increasing k, while E1 is almost
k independent. For free bosons in a 2d harmonic trap, the
DOS has a linear dependence on E in the entire energy
range (0 ≤ E ≤ ∞). For ρ(E) ∝ Eα−1, the specific heat
per boson for T ≤ T0 is given by [27]

Cv

NkB
= α(α + 1)

ζ(α + 1)
ζ(α)

(
T

T0

)α

, (13)
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Fig. 11. Temperature dependence of condensate fraction for
2500 bosons in a cubic lattice with 50 × 50 × 50 lattice sites
and harmonic potential with k = 0.05 (top), k = 0.02 (dashed),
k = 0.01 (dash-dot), and k = 0 (bottom).
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Fig. 12. Bosons number dependence of T0 for bosons in a cubic
50 × 50 × 50 lattice with k = 0.05 (top), k = 0.02 (dashed),
k = 0.01 (dash-dot), and k = 0 (bottom).

where ζ(α) =
∑∞

n=1(1/nα) is the Riemann zeta function.
Since for free bosons in a harmonic trap α = 2, Cv shows
a (T/T0)2 behavior for T ≤ T0. This feature is seen in
our calculated results (the dotted curve in Fig. 9). For
the lattice bosons in a harmonic trap in the low tempera-
ture region, only the low energy linear part of of the DOS
is occupied. Hence Cv shows behavior similar to that of
free bosons in a harmonic trap. When the temperature
is appreciable so that the flat portion of the DOS is also
occupied, the effective value of α decreases. This results
in a slower increase of Cv with T/T0 and lower value of
Cv compared to the free bosons case. These features are
prominent in Figure 9 for higher values of k which have
higher T0 values.

3.3 Three dimensional case

In Figures 11–13, we have presented our results for bosons
in 3d cubic lattices in a harmonic potential. The temper-
ature dependence of the condensate fraction (Fig. 11) and
the boson number dependence of the condensation tem-
perature (Fig. 12) shows variations similar to those found
for 2d systems. We find that T0 increases with increasing
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Fig. 13. The effect of harmonic potential strength on the spe-
cific heat per boson of 2500 bosons in a 50× 50× 50 cubic lat-
tice. The results shown are for k = 0.01 (solid line), k = 0.02
(dashed line), and k = 0.05 (dash-dot line). Dotted line with a
sharp peak is for 2500 bosons in a 3d harmonic trap.

harmonic potential strength as well as with the total num-
ber of bosons in the lattice. In Figure 13, we have shown
the effect of harmonic potential strength on the specific
heat of 3d lattice bosons. The peak value in Cv at T/T0 ≈ 1
is lower for higher values of k. For the 50 × 50 × 50 lat-
tice, Cv is lower for lower values of k at high temperatures
(T/T0 > 1.3). This results from the finite size of the lat-
tice, as mentioned previously. In comparison with a 2d
system, the harmonic potential strength has a lesser ef-
fect in 3d (see Figs. 9 and 13). In Figure 13, we have also
plotted the Cv for free bosons in a harmonic trap. The
Cv shows a (T/T0)3 dependence for T/T0 ≤ 1, which is a
known result [27]. The figure shows that the Cv for lat-
tice bosons in a harmonic trap has the same temperature
dependence in the low temperature range. We have cal-
culated the DOS for the bosons in the 3d lattice (of size
50× 50× 50) confined in a harmonic trap and found that
it has an E2 dependence in the low energy range. This
accounts for the (T/T0)3 behavior of the Cv for the lattice
bosons in a harmonic trap in the low temperature range.

In the work presented on bosons, the boson-boson in-
teraction is neglected. We believe that our results would
approximately hold when interaction energy (U) is much
smaller than the hopping energy (t). In an optical lattice,
the interaction energy (U) depends on the ratio between
the depth of the optical potential to the recoil energy. A
weakly interacting regime may be obtained by adjusting
the value of the potential depth to a low value [1,32]. In
the weak interaction regime, the interaction induced de-
pletion effects may not be significant.

4 Results on fermions

Due to recent interest [33,34] in fermions in optical lat-
tices, we have studied single (spin) component Fermi gas
in optical lattices with harmonic confinement in 1d, 2d,
and 3d. Another interest in studying this fermionic sys-
tem is that the bosons in the strongly interacting regime
behave similar to fermions to avoid double occupancy and
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Fig. 14. Specific heat per fermion in a 1d optical lattice (of size
3000 sites) in a harmonic potential with k = 0.0001 (dashed
line), 0.0005 (dash-dot), 0.01 (solid line). The filled circles are
results in the absence of harmonic potential (i.e., for k = 0).
The number of fermions (N) considered is 150. TF is the Fermi
temperature.
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Fig. 15. Specific heat per fermion in a 2d optical lattice (of size
250 × 250) in a harmonic potential with k = 0.01 (solid line),
and 0.02 (dashed line). The dots are results in the absence of
harmonic potential (i.e., for k = 0). The number of fermions
considered is 600.

minimize inter-particle repulsion energy and energy spec-
trum of strongly interacting bosons in 1d is very close to
that of the non-interacting fermions [29].

Our results for the specific heat for different values of
the trapping strength and for different dimensions are pre-
sented in Figures 14–16. The specific heat curves show a
linear variation at low temperatures, which is a charac-
teristic of a degenerate Fermi gas. At high temperatures,
the specific heat shows a more or less flat behavior. The
specific heat increases with decreasing k values except at
low temperatures. Similar results are also noted for bosons
(see Figs. 4 and 9). With increasing k value, the specific
heat for fermions approaches the corresponding value for
the k = 0 case.

We have determined the gradients of the specific heat
curves at low temperatures. For 3d, this value is 9.76 for
k = 0.01 and 4.98 for k = 0. The former is close to the
corresponding value (π2) for free fermions in a harmonic
trap while the latter is close to that (π2/2) of free fermions.
For the 2d case, this slope is 7.2 for k = 0.01 and 3.37 for
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Fig. 16. Specific heat per fermion in a 3d optical lattice (of size
100 × 100 × 100) in a harmonic potential with k = 0.01 (solid
line), 0.02 (dashed line), and 0.05 (dash-dot line). The dots are
results in the absence of harmonic potential (i.e., for k = 0).
The number of fermions considered is 1000.

k = 0, while for 1d it is 3.95 for k = 0.0001 and 1.69 for
k = 0. We find that in all dimensions, the values of the
gradient of the specific heat curves at low temperatures
for small (k/zt) (where, z is the coordination number of a
lattice), are close to those of free fermions in a harmonic
trap. The reason behind it lies in the fact that the single
particle density of states for small k values in an optical
lattice shows the same energy dependence as that of the
free fermions (bosons) in a harmonic trap at low energies,
as discussed in previous sections.

5 Conclusions

In this paper, we have presented a study of non-interacting
bosons under the influence of combined optical lattice and
harmonic potentials in one, two, and three dimensions.
The condensate fraction in 1d shows a faster reduction
with increasing temperature in the low temperature range
compared to that in 2d and 3d. The condensation tem-
perature in 1d increases linearly with increasing number
of lattice bosons. In comparison, T0 in 2d and 3d shows
a fast growth for small number of bosons and a mono-
tonic increase thereafter. It is found that, for a given num-
ber of bosons, the condensation temperature is higher for
bosons in the combined harmonic and optical potentials
compared to the cases in which either of the potentials is
absent.

The specific heat results show several interesting fea-
tures. In 1d, specific heat of lattice bosons in harmonic
potential is found to show a very slow growth with tem-
perature, except in the low temperature range where the
growth is relatively faster. In 2d and 3d, Cv of lattice
bosons in a harmonic trap has a peak at the condensation
temperature. When the lattice size effects are important in
Cv, we find that the Cv per boson is lower for smaller lat-
tice sizes except at low temperatures. In 2d, flat regions
are observed in Cv for a substantial temperature range
below the condensation temperature for relatively smaller
lattices. When the lattice size effects are negligible, we find
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that the lattice bosons in a harmonic trap has a consider-
ably reduced specific heat compared to that for free bosons
in a harmonic trap for temperatures around and above T0.
In all dimensions, the low temperature Cv is very close to
that of free bosons in a harmonic trap. The specific heat of
the lattice bosons is strongly dependent on the strength of
the harmonic potential in contrast to that of free bosons
in a harmonic potential. In all dimensions for large size
systems when the lattice size effects are negligible, the Cv

is lower for higher values of k around and above T0. How-
ever, the Cv curves for different k values cross each other
above T0 when finite size effects are present. Considering
recent interest in fermions in optical lattices, we presented
some preliminary results on the specific heat of fermions
in optical lattices in a harmonic potential in 1d, 2d, and
3d. The specific heat is found to show a linear tempera-
ture dependence at low temperatures and a flat behavior
at high temperatures. With increasing strength of the har-
monic potential, the specific heat is found to approach the
pure lattice fermion results. The temperature dependence
of the specific heat of lattice bosons and fermions in a
harmonic trap is governed by a complex interplay of the
delocalizing effects of the boson kinetic energy, confining
effect of the harmonic potential, and the thermal energy.

RRK thanks Professor Bikash Sinha, Director, SINP and Pro-
fessor Bikas Chakrabarti, Head, TCMP Division, SINP for hos-
pitality at SINP.
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Bloch, Nature 415, 39 (2002)
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